LNG
LNG is a gas transport product. The gas, which is primarily methane (CH4),
is converted to liquid form for ease of storage or transport, as its volume is
about 1/600th the volume of natural gas in the gaseous state. It is produced
close to the production facilities in an LNG liquefaction plant, stored,
transported in cryogenic tanks on an LNG carrier, and delivered to an LNG
regasification terminal for storage and delivery to a pipeline system.
71
LNG carriers are used when the transport distance does not justify the cost
of a pipeline. The main drawback is the cost of the liquefaction, calculated as
how much of the total energy content of the gas is used for liquefaction.
About 6% of energy content is used to produce LNG in a large modern plant,
due to overall thermal efficiency. More than 10% could be consumed with
smaller, gas turbine-driven trains. This compares to losses of about 0.9% per
1,000 km of transport distance for large pipeline systems.
Melkøya LNG Plant with LNG Carrier Arctic Princess Photo: Statoil
The LNG feedstock comes from a gas plant as outlined above. It must
satisfy sales gas specifications. Ethane, propane and butane all have
freezing points of less than -180 °C and can be part of the LNG, but the
concentration of methane is generally above 90%. Some NGLs are also
needed as refrigerant for the cryogenic process.
5.5.1 LNG liquefaction
LNG processes are generally patented by large engineering, oil and gas
companies, but are generally based on a one- two- or three-stage cooling
process with pure or mixed refrigerants. The three main process types of
LNG process with some examples of process licensors are:
• Cascade cycle:
o Separate refrigerant cycles with propane, ethylene and
methane (ConocoPhillips)
• Mixed refrigerant cycle:
o Single mixed refrigerant (SMR) (PRICO)
o Single mixed refrigerant (LIMUM®
) (Linde)
o Propane pre-cooled mixed refrigerant: C3MR (sometimes
referred to as APCI: Air Products & Chemicals, Inc.)
o Shell dual-mixed process (DMR) (Shell)
72
o Dual mixed refrigerant (Liquefin Axens)
o Mixed fluid cascade process (MFCP) (Statoil/Linde)
• Expander cycle
o Kryopak EXP®
process
Each process has different characteristics in scalability, investment cost and
energy efficiency. For smaller installations, e.g., to handle stranded gas or
isolated small gas fields, a single cycle process is preferable due to its low
CAPEX (and possibly lower weight for floating LNG), even if energy
efficiency is significantly lower than the best cascade or DMR processes,
which cost more but also allow the largest trains typically, 7.8 million tons per
annum and lowest energy consumed per energy unit LNG produced.
Most processes use a mixed refrigerant (MR) design. The reason is that the
gas has a heat load to temperature (Q/T) curve that, if closely matched by
the refrigerant, will improve stability, throughput and efficiency (see the figure
below). The curve tends to show three distinct regions, matching the precooling, liquefaction and sub-coiling stages. The refrigerant gas composition
will vary based on the individual design, as will the power requirement of
each stage, and is often a patented, location-specific combination of one or
two main components and several smaller, together with careful selection of
the compressed pressure and expanded pressure of the refrigerant, to
match the LNG gas stream.
Figure 13. LNG Q/T diagram
73
Typical LNG train power use is about 28 MW per million tons of LNG per
annum (mtpa),
corresponding to typically 200 MW for a large trains of 7.2
mtpa, or 65 MW per stage for three cycles. In addition, other consumers in
gas treatment and pre-compression add to total power consumption and
bring it to some 35-40 MW per mtpa, and over 50 for small LNG facilities well
under 1 mtpa capacity.
Some examples are given here. (Please note that these process flow
diagrams are simplified to illustrate the principle and do not give a complete
design.) All designs are shown with heat exchangers to the sea for
comparison. This is generally needed for high capacity, but for smaller plants
air fin heat exchangers are normally used.
A triple cycle mixed refrigerant cascade claims to have the highest energy
efficiency. It is represented here by the Linde design, co-developed with
Statoil.
Figure 14. A triple cycle mixed refrigerant cascade
The actual design varies considerably with the different processes. The most
critical component is the heat exchanger, also called the cold box, which is
designed for optimum cooling efficiency. Designs may use separate cold
boxes, or two or three cycles may combine into one complex common heat
exchanger. This particular deign uses the patented Linde coil wound heat
exchanger, also called the “rocket design,” due to its exterior resemblance to
a classic launch vehicle.
For each train, the cooling medium is first passed through its cooling
compressor. Since pressure times volume over temperature (PV/T) remains
Treated
Natural
Gas
LNG
M M
Pre Cooling Liquefaction
G
Sub Cooling
M
74
constant, it results in a significant temperature rise which has to be
dissipated, typically in a seawater heat exchanger as shown in the figure
above (indicated by the blue wavy line). It then goes though one or more
heat exchangers/cold boxes before it expands, either though a valve or a
turbo-expander, causing the temperature to drop significantly. It is then
returned to cool its cold box before going on to the compressor.
The pre-cooling stage cools the gas to a temperature of about -30 to -50 ºC
in the precooling cold box. The cooling element is generally propane or a
mixture of propane and ethane and small quantities of other gases. The precooling cold box also cools the cooling medium for the liquefaction and sub
cooling stage.
The liquefaction process takes the gas down from -30 ºC to about -100-125
ºC, typically based on a mixture of methane and ethane and other gases. It
cools the LNG stream as well as the refrigerant for the final stage.
Sub-cooling serves to bring the gas to final stable LNG state at around 162
ºC. The refrigerant is usually methane and/or nitrogen.
The ConocoPhillips optimized cascade process was developed around
1970. It has three cycles with a single refrigerant gas (propane, ethylene and
methane) in each.